If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19.62=5t^2
We move all terms to the left:
19.62-(5t^2)=0
a = -5; b = 0; c = +19.62;
Δ = b2-4ac
Δ = 02-4·(-5)·19.62
Δ = 392.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{392.4}}{2*-5}=\frac{0-\sqrt{392.4}}{-10} =-\frac{\sqrt{}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{392.4}}{2*-5}=\frac{0+\sqrt{392.4}}{-10} =\frac{\sqrt{}}{-10} $
| 4y+12(0)=12 | | 4y+12(-2)=12 | | 8x+7=252 | | 1.5=0.4t+1.2 | | 4y+12(-1)=12 | | 8y+48(1)=48 | | n−5=5n−1 | | |a/6=3=14| | | 8y+48(0)=48 | | 8y+48(-1)=48 | | 25/r=75 | | 5w–9=44 | | 8y+48(-2)=48 | | 4x+x+2=10x-3 | | -6(x=7)=-12 | | 45x+1=44x+3 | | 6x-15=-4x+35 | | 9.35=n—5 | | .2x+6=–4x | | (4x+1)^3=27 | | X=-9.5+1.5y | | -5y–15=10y+20 | | 3x-6+4x=-27 | | 144=9(9+x) | | 3x+6+4x=-27 | | 2n+6=2*(n+3) | | 6y–12=24 | | 9x-5=134 | | (15-6x)/15=0 | | 90=6*x | | 3=u-3/3 | | (3/2)(4x-1)-3x=5/4-(x+2) |